国产无限资源在线观看-国产五区-国产五月-国产五月天在线-性做久久久久久久久老女人-性做久久久久久久免费看

020-8288 0288

高光譜圖像技術在水果品質無損檢測中的研究

發布時間:2023-03-30
瀏覽次數:1031

水果很容易受到人工或外界等物理因素的影響,致使其內外部的品質受到損傷,水果很容易受到人工或外界等物理因素的影響,致使其內外部的品質受到損傷 。 因此,發展準確、快速、無損的檢測技術已成為水果品質檢測領域重要的研究課題。

高光譜圖像技術在水果品質無損檢測中的研究

? ? ? ?隨著人民生活質量的逐步提升,消費者對水果質量的要求也越來越高。 但水果的內部品質不宜觀察,且在采摘、包裝和運輸過程中,水果很容易受到人工或外界等物理因素的影響,致使其內外部的品質受到損傷?。 因此,發展準確、快速、無損的檢測技術已成為水果品質檢測領域重要的研究課題。 隨著光譜技術的不斷發展,高光譜圖像技術被逐漸應用于水果無損檢測。 作為新一代的光電檢測技術,高光譜圖像技術結合了光譜學、機器視覺、計算機圖像學、近紅外光譜檢測等多學科知識,將光譜技術和傳統的二維成像技術進行了有機融合,具有高分辨率、超多波段和圖像光譜合一等優點?,將高光譜圖像技術應用于水果品質檢測領域具有重要的意義?。 高光譜成像技術可以同時得到水果的圖像和光譜信息,其中圖像信息能夠直接反映水果的外部形狀特征、顏色、缺陷等情況?,而光譜數據則可以用 于分析水果化學成分含量,如糖度、酸度、可溶性固形物含量等。 本文主要介紹國內外學者利用高光譜成像技術對水果品質進行無損檢測的研究進展,并探討了該技術未來的發展前景。




image.png


1 高光譜圖像技術簡介?

1. 1 高光譜成像系統?

? ? ? ?高光譜成像系統是20 世紀80年代興起的新一代光電探測技術。一般認為,光譜分辨率在10-1λ 數量級的范圍內稱之為多光譜,光譜分辨率在10-2λ 數量級的范圍內稱為高光譜,高光譜成像相對多光譜成像而言具有更高的分辨率。?

? ? ? ?高光譜檢測系統主要由源、面陣CCD或CMOS相機和計算機軟硬件等組成。光源是高光譜成像系統的重要組成部分,為整個成像系統提供照明,其產生的光被檢測物體吸收和散射后成為信息的載體,進入相機的入口狹縫,通過相機中的光譜成像儀將光信號映射到二維面陣檢測器上,最后根據計算機軟件和硬件采集、處理、分析以及存儲高光譜圖像數據。?

image.png


1. 2 高光譜圖像數據的采集方式?

? ? ? ?根據高光譜圖像采集方式的不同,可分為點掃描、線掃描和面掃描三種。 點掃描方式每次掃描只能獲得一個像素點的光譜,不適用于快速檢測,所以點掃描的方式常常被用于檢測微觀對象。線掃描方式通過每次掃描可以獲得掃描線上的光譜,適用于傳輸帶上物體的實時檢測,因此該方法是水果品質檢測中最常用的圖像采集方法。點掃描和線掃描方式都屬于光譜域掃描方式,首先獲得圖像的光譜和一個維度的空間信息,再通過掃描移動,獲得另一維度空間信息。 而面掃描方式屬于空間域掃描方式,可以同時獲取單個波長下被測物體兩個空間維度的圖像信息,其數據采集量大且數據采集時間較長,高光譜成像系統中通常會選擇面掃描方式。?


2 高光譜圖像技術的研究進展?

2. 1 水果品質定性分析?

2. 1. 1 機械損傷?

? ? ?水果在收獲和運輸過程中很容易因為外界的沖擊、振動或擠壓而出現機械損傷,從而使水果的品級降低并造成經濟損失?,F在對水果機械損傷的檢測多是通過人眼檢測,檢測精度較低,致使分類不夠精準,無法滿足消費者對水果質量的要求,而高光譜檢測技術以其高精度無損檢測的特點正在逐漸取代原有的檢測技術。?

? ? ?近十年來,采用高光譜成像技術檢測蘋果機械損傷的研究已有很多,韓浩然等利用高光譜成像技術來檢測蘋果的摔傷,試驗結果表明,波段比算法和主成分分析法分類識別正確率為93.3% ,適用于蘋果摔傷的實時快速檢測。 Baranowski 等采用配備了在可見光和短波近紅外(VIS / SWNIR,400~1000nm) 傳感器的高光譜相機、中波近紅外(MNIR,1000~2500nm)和紅外(IR,3500~5000nm) 范圍的熱成像相機系統來檢測蘋果的早期瘀傷。結果表明,將VIS / SWNIR、MNIR和IR三個范圍結合在一起的模型獲得了區分瘀傷和完好組織以及各種深度瘀傷的最佳預測效率, 使用廣譜范圍(400~5000nm)進行水果表面成像可以改善對蘋果不同深度早期瘀傷的檢測效果。Nayeli等利用近紅外高光譜成像系統檢測芒果的機械損傷,采用了五種分類方法,在產生損壞后的七天內捕獲圖像,從而可以有效檢測到出現損壞的時刻。結果發現近鄰法(k-Nearest Neighbours,k-NN)的分類效果最好,正確分類率可以達到97.90% 。林思寒利用PLS和LDA方法結合高光譜成像技術,建立了翠冠梨完好果和不同損傷天數碰壓果的PLS-LDA檢測模型。?

? ? ? 結果表明,其機械損傷果和完好果的識別準確率都在90%以上,最高可達97.78% 。目前,現有高光譜檢測技術的檢測精度已經能夠滿足分類需求,但針對損傷程度的檢測模型還較少。?


查看源圖像

2. 1. 2 凍傷?

? ? ?凍傷是水果缺陷檢測中最常見的指標之一,其早期檢測和監測比較困難,為了更早地將有缺陷的水果從營銷鏈中去除,需要一種快速、精確和無損的檢測技術。近年來,研究人員針對蘋果凍傷方面的研究主要集中在算法優化層面。 ElMasry等利用高光譜成像(400~1000nm)檢測“紅元帥”蘋果中的凍傷,開發了一種前饋反向傳播模型,選擇出五個特征波長的光譜作為模型的輸入,以普通與凍傷為輸出結果,構建了人工神經網絡識別模型。高光譜圖像技術結合化學計量學方法在識別凍傷水果方面的研究已有一定進展,檢測精度普遍較高,未來可以進行水果凍傷分級識別的在線檢測研究,進一步提高檢測效率。?


水果凍傷 的圖像結果


2. 1. 3 成熟度?

? ? ? ?水果成熟度是決定水果內在品質的關鍵因素,也是確定水果貨架期的重要指標。水果成熟的過程 非常復雜,以往所用的傳統檢測水果成熟度方法局限于人工視覺檢測,實驗室理化檢測等。這些方法不但費時費力,主觀性較強,且均需破壞樣本才可實現[26-28] 。近年來,國內外學者開始研究無損檢測技術對水果的成熟度進行判別分析,其中高光譜圖像技術以其特有的優勢,在水果成熟度方面的研究比較豐富。?

? ? ? 使用高光譜成像技術對香蕉成熟度進行了研究,提前采集水分含量、硬度和總可溶性固體等質量參數,并與光譜數據相關。運用PLS來分析光譜數據,使用預測的殘差誤差平方和來選擇特征波長?。?

由此可見,不同的特征選擇算法對于最后的分類精度影響很大,對不同水果選擇不同的特征算法尤為重要。?


查看源圖像


2. 2 水果品質定量分析?

2. 2. 1 硬度預測?

? ? ? ?硬度是表現水果成熟度和口感品質的一個重要特征,傳統的硬度檢測方法普遍對樣本有損傷,而高光譜成像技術則能夠對水果硬度進行快速、無損檢測。張巍使用自主搭建的高光譜成像系統(500~1000nm),以藍莓為研究對象,采用連續投影算法(SPA)對特征光譜進行提取,并建立基于全波段-BP神經網絡的硬度預測模型與基于SPA-BP神經網絡的硬度預測模型。?


2. 2. 2 可溶性固形物預測?

? ? ? ?水果中的可溶性固形物(SSC)包括可溶性糖類、 維生素、礦物質等,是影響水果內部品質的重要因素。 羅霞等利用高光譜技術采集火龍果的漫反射光譜,并進行火龍果可溶性固形物的無損檢測。應用連續投影算法(SPA) 對特征變量進行選擇,采用8種方法對原始光譜數據進行預處理,通過偏最小二乘法(PLS) 和前饋反向傳播神經網絡法(BPNN) 建立預測模型。在檢測水果的可溶性固形物時,使用不同的預處理方法會對檢測精度產生較大影響,應在多種預 處理方法中選取產生最優結果的預處理方法。?


2. 3 安全方面檢測

2. 3. 1 藥物殘留?

? ? ? ?水果表面的藥物殘留不僅極大影響水果的質量安全,還影響果品出口貿易。因此,對水果表面的藥物殘留進行無損檢測十分必要。徐潔等利用高光譜技術,建立距離判別分析模型和貝葉斯判別分析模型,并對哈密瓜表面殘留藥物的種類進行判別。結果表明,在紫外燈光源的環境中,距離判別法的準確率較高,為94. 67% ;在鹵素燈光源環境中,貝葉斯判別法的準確率較高,為100. 00% 。Jiang等對蘋果農藥殘留高光譜數據特征進行分析,構建了適用于蘋果農藥殘留檢測的AlexNet-CNN框架,并對四種高光譜蘋果農藥殘留的6144張圖像進行檢測。結果表明,測試集檢測精度為 99. 09% ,單波段平均圖像檢測精度為95. 35% ??梢姡吖庾V成像技術在藥物殘留檢測方面已經達到了很高的精度。?


2. 3. 2 病蟲害?

? ? ? ?病蟲害的存在會極大地降低水果的品質,利用高光譜技術可以有效地對水果病蟲害進行無損檢測,這對水果品質分級具有重要意義。 Bart 等開發了一種高光譜NIR成像系統來識別蘋果上的苦陷癥,構建了PLS校準模型,用來區分未受影響的蘋果表面和苦陷癥。結果表明,該系統可以識別出收獲后肉眼不可見的苦陷癥,但無法區分苦陷癥和軟組織。使用高光譜成像方法確定棗中的受損區域,運用逐步判別分析法將棗分為有蟲侵害型和無蟲侵害型,分類準確率約為97. 0% 。但現有檢測技術大多只能檢測一種病蟲害,少有開發出可以同時檢測出多種病蟲害的高光譜模型。?


image.png


3 存在問題及發展趨勢?

? ? ? ?高光譜成像技術雖然在水果無損檢測方面有較 多的應用,但仍存在著一些不足。 高光譜的穿透深度不夠高,對于果皮比較厚的水果難以檢測。 反射、透射時需要使用大光源,但光源能量過高又容易損傷水果,如何在無損檢測和更深層檢測間達到平衡是未來要解決的關鍵問題;高光譜的圖像數據量大,冗余信息多,如何選擇特征波長,去除無相關的變量來提升檢測效率也是急需解決的一個問題;

? ? ? ?水果含水率普遍較高,高光譜檢測時在1400nm后會受到水分吸收峰的影響,如何避免水分吸收峰對檢測結果的影響也亟待解決。針對檢測樣品方面,現階段大多數的研究都選取表皮較薄的水果(如蘋果、梨、桃子等)進行品質缺陷檢測,但對表皮較厚的水果(如西瓜、哈密瓜、椰子等)品質檢測仍然較少,高光譜檢測技術如何突破檢測深度的限制將給這些較厚果皮水果品質檢測帶來新的應用。 在試驗設計方面,大多數研究都只針對水果是否存在缺陷進行分級,沒有考慮缺陷程度對水果保質期的影響,如水果受到輕微損傷后,在短期內其內外部品質與經濟價值波動較小,但儲存一定時間后水果品質可能會發生較大改變,因此研究缺陷程度對水果保質期的影響對水果儲存及經儲存后水果的品質預測具有深遠的現實意義。?

? ? ? ?隨著計算機技術和圖像處理技術等的進一步發展和更深地融合,高光譜圖像檢測技術在水果品質無損檢測領域必將有更加廣泛的應用。在高光譜檢測應用技術推 廣方面,由于圖像采集和處理速度的限制以及設備成本的制約,高光譜技術在現實生活中還未得到大范圍的應用,可以權衡檢測準確率與設備成本,開發專用小型化設備以實現高光譜技術的進一步推廣。?

4 小結

? ? ? ?近年來,高光譜圖像檢測技術在水果品質的無損檢測方面得到了廣泛的應用,硬件的設計與實現以及圖像處理的算法都取得了進步,檢測的準確率逐漸提升,體現出其克服傳統分析工具復雜性、繁瑣性、破壞性的巨大潛力。 但高光譜圖像技術還有較多問題值得深入研究,隨著科技的進步以及信息時代的到來,此技術必將會越來越成熟,應用前景也將 越來越廣闊。??

聯系我們

Contact us
廣東賽斯拜克技術有限公司
  • 地址:廣州市增城區新城大道400號智能制造中心33號樓601
  • 電話:020-8288 0288   13500023589
  • 郵箱:3nh@3nh.com
  • 網址:http://m.hometels.cn
Copyright © 2024 廣東賽斯拜克技術有限公司 版權所有
  • 公司聯系方式
    QQ
  • 網站首頁
    首頁
  • 公司聯系電話
    電話
  • 返回
    返回頂部
  • 主站蜘蛛池模板: 99久久99久久久精品齐齐鬼色| 35qao强力打造免费上线高清| 欧美乱码视频| 禁漫画羞羞动漫入口| 国产在视频线精品视频2021| 高黄视频| 女人色网| 四虎永久影院永久影库| 精品福利| www.av在线.com| 米奇色影院| 三级国产在线| 在线观看你懂得| 公开免费视频| se色成人亚洲综合| 牛牛碰在线| 午夜视频在线观看网站| 成人欧美一区二区三区视频不卡| 欧美区在线播放| 毛片官网| 成人拍拍视频| 人人干人人爽| 日日操操干干| 天天做天天爱夜夜爽毛片毛片 | 狠狠干b| 性猛交xxxx乱大交孕妇| 久久semm亚洲国产| 日本高清免费一本视频在线观看| 国产精品久久久亚洲456| 久久久夜夜夜| 老湿成人影院| 91大神在线看| 777色淫网站女女免费| 99在线国产| 日本黄在线| 欧美性爽xxxⅹbbbb| 日韩美a一级毛片| 三级在线播放| 精品三级国产精品经典三| 黄色一级片播放| 国产三级在线播放|