高光譜成像儀的工作原理和應用范圍
發布時間:2023-04-14
瀏覽次數:583
高光譜成像儀從20世紀80年代開始在多光譜遙感成像技術的基礎上發展。它以高光譜分辨率獲取高光譜圖像,可用于精確分類地物、識別地物、提取地物特征信息。本文主要介紹了高光譜成像儀的工作原理和應用范圍。
高光譜成像儀從20世紀80年代開始在多光譜遙感成像技術的基礎上發展。它以高光譜分辨率獲取高光譜圖像,可用于精確分類地物、識別地物、提取地物特征信息。本文主要介紹了高光譜成像儀的工作原理和應用范圍。
高光譜成像儀的工作原理
高光譜遙感信息處理和定量分析模型建立目標后,可以提高高光譜數據處理的自動化和智能化水平。由于高光譜成像儀高光譜分辨率的巨大優勢,它已成為當代空間地面觀測的主要技術手段,在空間地面觀測的同時,獲得了許多連續波段的地面物體光譜圖像,從而達到了從空間中直接識別地球表面物質的目的。在科學研究、工農林業環境保護等方面取得了巨大成就。
地面物體的反射光通過物理鏡在狹縫平面上成像,狹縫被用作光欄,以使穿過軌道方向的地面物體的圖像通過,并阻擋其他部分的光。地面目標的輻射可以通過方向鏡收集,并通過狹縫增強直接照射到色散元件,通過色散元件在垂直帶方向根據光譜分散,傳感器中使用的二維CCD表面陣列檢測元件聚集成像分布在光譜儀的焦平面上。焦平面的水平方向在狹縫中平行,稱為空間維度。每一行水平光敏感元是地面條帶的光譜波段圖像;焦炭平面的垂直方向是色散方向,稱為光譜維度。每列光敏感元是地面條帶、空間采樣場(像元)光譜色散圖像。通過這種方式,表面陣列檢測器的每個圖像數據是軌道方向上的地面條帶的光譜數據,以及航天器的運動,以一定的速度連續記錄光譜圖像,獲得地面圖像和圖像立方體的二維圖像。
高光譜成像儀的應用范圍
高光譜成像儀在化學、物理、生物、醫學等多個領域的應用范圍內,對于純定性到高定量的化學分析和分子結構的測定具有很大的應用價值。例如,在生物化學研究中,可以使用喇曼光譜來識別某些物質的類型,也可以測量分子的振動和旋轉頻率,定量理解分子之間的力和分子內部力,并推斷分子的對稱性、幾何形狀、分子中原子的排列、熱力學功能的計算、振動旋轉拉曼光譜和旋轉拉曼光譜的研究,可以獲得相關分子常數的數據。對于非極性分子,由于它們不吸收或發射旋轉和振動光譜,振動旋轉能量和對稱性以及其他許多信息反映在散射光譜中。對于極性分子,許多分子參數可以通過紅外光譜獲得,但為了獲得更完整的數據,紅外光譜和拉曼光譜通常同時被觀察,它們有不同的選擇,可以提供相互補充的數據。
相關產品
-
什么是高光譜,高光譜前景,高光譜科研實驗室應用
高光譜技術,又稱高光譜成像技術(Hyperspectral Imaging, HSI),是一種結合了傳統計算機視覺與光譜分析技術的創新方法。它能夠在特定光譜范圍..
-
光譜儀的應用
光譜儀作為一種強大的分析工具,通過捕捉和分析物質與光相互作用產生的光譜信息,為科學研究、工業生產、環境監測和天文學等多個領域提供了重要的技術支持。本文將詳細介紹..
-
與光譜相關的化學分析儀器及其原理、優缺點
?光譜儀作為化學分析中的得力助手,通過捕捉物質與光相互作用的微妙信號,揭示了物質的內在化學信息。本文將詳細介紹五種常見的光譜分析儀器——分光光度計、原子吸收光譜..
-
光譜儀的發展歷程
光譜儀,這一基于光譜學原理的精密儀器,自其誕生以來,便成為了連接光與物質世界的橋梁。它能夠將光線分解成各個波長的光,并通過探測器檢測記錄下來,為我們揭示光源或物..