高光譜圖像數(shù)據(jù)的分析處理方法介紹
發(fā)布時間:2024-05-24
瀏覽次數(shù):311
高光譜圖像數(shù)據(jù)往往會含有大量的冗余信息,為了提取有效的光譜信息,就需要對獲取的圖像數(shù)據(jù)進行處理,以保證預測模型建立的準確性。本文對高光譜圖像數(shù)據(jù)的分析處理方法做了介紹。
高光譜圖像數(shù)據(jù)往往會含有大量的冗余信息,為了提取有效的光譜信息,就需要對獲取的圖像數(shù)據(jù)進行處理,以保證預測模型建立的準確性。本文對高光譜圖像數(shù)據(jù)的分析處理方法做了介紹。
高光譜圖像預處理:
高光譜圖像因其攜帶大量的數(shù)據(jù)信息,增強了技術(shù)的檢測能力,同時也增大了信息的冗余量,因此在預處理階段的主要目的即對立體數(shù)據(jù)進行降維處理。在保存感興趣特征的同時減少數(shù)據(jù)信息量,降低處理信息的時長與難度同時增強數(shù)據(jù)分析的精確度。目前,較為普遍的高光譜圖像預處理方法有特征選擇和特征提取兩種方法。
特征選擇是指從最初波段中直接選取有效的特征波段,達到降低數(shù)據(jù)維度的目的。特征提取是指通過對一個或若干個原始波段的屬性關(guān)系進行組合變換,得到新的特征屬性。光譜信息的冗余量與相關(guān)性取決于波段的寬窄度,因而選取最優(yōu)波段是圖像降維度過程的關(guān)鍵要素。實際檢驗鑒定中常通過多種降維方法交叉結(jié)合使用,來達到最佳的檢驗結(jié)果。如基于主成分分析、基于高階統(tǒng)計量的獨立元分析、最小噪聲分離變換、傅里葉變換、基于核函數(shù)和基于神經(jīng)網(wǎng)絡(luò)的非線性特征分析等。
數(shù)據(jù)特征分析:
根據(jù)檢材在光譜圖中的不同特性信息反映,選取不同分類模型對不同類別的待測目標進行分類。使用計算機分析處理作為輔助方法,彌補鑒定人員的視覺鑒別傳統(tǒng)方法的不足,如最大似然比分類、卷積神經(jīng)網(wǎng)絡(luò)分類方法等等。作為機器學習方法之一的監(jiān)督學習,通過對已知標簽的特征進行提取學習,構(gòu)造訓練函數(shù)完成對未知樣本的分類檢驗任務(wù),如K近鄰法、馬氏距離分類、最大似然法、最小距離法、光譜角分類法等等。另一種非監(jiān)督分類則是直接對光譜信息進行特征提取,統(tǒng)計差別進行分類,如K-均值、ISODATA(迭代自組織數(shù)據(jù)分析)等。對高光譜圖進行數(shù)據(jù)分析的過程中,通過總體分類精度對分類方法進行評價,選擇最有效的分類方法而獲得最佳結(jié)果。
相關(guān)產(chǎn)品
-
什么是高光譜,高光譜前景,高光譜科研實驗室應(yīng)用
高光譜技術(shù),又稱高光譜成像技術(shù)(Hyperspectral Imaging, HSI),是一種結(jié)合了傳統(tǒng)計算機視覺與光譜分析技術(shù)的創(chuàng)新方法。它能夠在特定光譜范圍..
-
光譜儀的應(yīng)用
光譜儀作為一種強大的分析工具,通過捕捉和分析物質(zhì)與光相互作用產(chǎn)生的光譜信息,為科學研究、工業(yè)生產(chǎn)、環(huán)境監(jiān)測和天文學等多個領(lǐng)域提供了重要的技術(shù)支持。本文將詳細介紹..
-
與光譜相關(guān)的化學分析儀器及其原理、優(yōu)缺點
?光譜儀作為化學分析中的得力助手,通過捕捉物質(zhì)與光相互作用的微妙信號,揭示了物質(zhì)的內(nèi)在化學信息。本文將詳細介紹五種常見的光譜分析儀器——分光光度計、原子吸收光譜..
-
光譜儀的發(fā)展歷程
光譜儀,這一基于光譜學原理的精密儀器,自其誕生以來,便成為了連接光與物質(zhì)世界的橋梁。它能夠?qū)⒐饩€分解成各個波長的光,并通過探測器檢測記錄下來,為我們揭示光源或物..